Interaction between murine spf-ash mutation and genetic background yields different metabolic phenotypes.

نویسندگان

  • Juan C Marini
  • Ayelet Erez
  • Leticia Castillo
  • Brendan Lee
چکیده

The spf-ash mutation in mice results in reduced hepatic and intestinal ornithine transcarbamylase. However, a reduction in enzyme activity only translates in reduced ureagenesis and hyperammonemia when an unbalanced nitrogen load is imposed. Six-week-old wild-type control and spf-ash mutant male mice from different genetic backgrounds (B6 and ICR) were infused intravenously with [(13)C(18)O]urea, l-[(15)N(2)]arginine, l-[5,5 D(2)]ornithine, l-[6-(13)C, 4,4,5,5, D(4)]citrulline, and l-[ring-D(5)]phenylalanine to investigate the interaction between genetic background and spf-ash mutation on ureagenesis, arginine metabolism, and nitric oxide production. ICR(spf-ash) mice maintained ureagenesis (5.5 +/- 0.3 mmol.kg(-1).h(-1)) and developed mild hyperammonemia (145 +/- 19 micromol/l) when an unbalanced nitrogen load was imposed; however, B6(spf-ash) mice became hyperammonemic (671 +/- 15 micromol/l) due to compromised ureagenesis (3.4 +/- 0.1 mmol.kg(-1).h(-1)). Ornithine supplementation restored ureagenesis and mitigated hyperammonemia. A reduction in citrulline entry rate was observed due to the mutation in both genetic backgrounds (wild-type: 128, spf-ash: 60; SE 4.0 micromol.kg(-1).h(-1)). Arginine entry rate was only reduced in B6(spf-ash) mice (B6(spf-ash): 332, ICR(spf-ash): 453; SE 20.6 micromol.kg(-1).h(-1)). Genetic background and mutation had an effect on nitric oxide production (B6: 3.4, B6(spf-ash): 2.8, ICR: 9.0, ICR(spf-ash): 4.6, SE 0.7 micromol.kg(-1).h(-1)). Protein breakdown was the main source of arginine during the postabsorptive state and was higher in ICR(spf-ash) than in B6(spf-ash) mice (phenylalanine entry rate 479 and 327, respectively; SE 18 micromol.kg(-1).h(-1)). Our results highlight the importance of the interaction between mutation and genetic background on ureagenesis, arginine metabolism, and nitric oxide production. These observations help explain the wide phenotypic variation of ornithine transcarbamylase deficiency in the human population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient mitochondrial import of newly synthesized ornithine transcarbamylase (OTC) and correction of secondary metabolic alterations in spf(ash) mice following gene therapy of OTC deficiency.

BACKGROUND The mouse strain sparse fur with abnormal skin and hair (spf(ash)) is a model for the human ornithine transcarbamylase (OTC) deficiency, an X-linked inherited urea cycle disorder. The spf(ash) mouse carries a single base-pair mutation in the OTC gene that leads to the production of OTC enzyme at 10% of the normal level. MATERIALS AND METHODS Recombinant adenoviruses carrying either...

متن کامل

Molecular screening of R117H mutation in non caucasian cystic fibrosis patients in the north of Iran

Cystic fibrosis is an autosomal recessive disease caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator protein. These mutations that correlate with different phenotypes, vary in their frequency and distribution in different populations. In this study missense mutation R117H that associated with the different clinical symptoms wa...

متن کامل

Functional Characterization of the spf/ash Splicing Variation in OTC Deficiency of Mice and Man

The spf/ash mouse model of ornithine transcarbamylase (OTC) deficiency, a severe urea cycle disorder, is caused by a mutation (c.386G>A; p.R129H) in the last nucleotide of exon 4 of the Otc gene, affecting the 5' splice site and resulting in partial use of a cryptic splice site 48 bp into the adjacent intron. The equivalent nucleotide change and predicted amino acid change is found in OTC defic...

متن کامل

Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs) are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA). A prospective analysis of interim HA events in a cohort of individuals with ornithin...

متن کامل

Metabolic syndrome and different obesity phenotypes in the elderly women population: Iran’s Health System on aging

Background: Current literature has been focused on types of obesity with normal BMI (body mass index), but metabolically unhealthy.This study evaluates the prevalence of metabolical phenotypes of obesity. We also identified the best obesity index in predicting the components of metabolic syndrome (MetS). Methods: A cross-sectional study has been conducted on 164 women over 60 years. Anthropome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 293 6  شماره 

صفحات  -

تاریخ انتشار 2007